OUR OWN HIGH SCHOOL, AL WARQA'A, DUBAI

GRADE: X – **TRIANGLES**

ASSIGNMENT 1

1. In \triangle ABC, DE // BC so that AD = 24 cm, AE = 32 cm and EC = 48 cm. Find AB.

- 2. In a \triangle ABC, D and E are points on the sides AB and AC respectively such that DE // BC. If AD = x, DB = x 2, AE = x + 2 and EC = x 1, then find the value of x.
- 3. Prove that a line parallel to the parallel sides of a trapezium, divides the non parallel sides in the same ratio.
- 4. The areas of two similar triangles ABC and LMN are 64 cm² and 81 cm² respectively. If MN = 6.3 cm, find BC.
- 5. Prove that in a $\triangle ABC$ with $AD \perp BC$, $AB^2 + CD^2 = AC^2 + BD^2$.

ASSIGNMENT 2

1. In the figure, find CA if CD \perp DB, and AD \perp DB

2. In the figure, \triangle PQR is right angled at Q, and the points S and T trisect the side QR. P

Prove that: $8PT^2 = 3PR^2 + 5PS^2$

- 3. In a quadrilateral ABCD, $\angle B = 90^\circ$, if $AD^2 = AB^2 + BC^2 + CD^2$ prove that $\angle ACD = 90^\circ$.
- 4. In the figure, PA, QB and RC each is perpendicular to AC such that PA = x, RC = y, QB = z. P
 - Prove that: $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$ x A A A BC
- 5. ABCD is a trapezium in which AB // DC and its diagonals intersect each other at the point O.

Prove that:
$$\frac{AO}{OC} = \frac{BO}{OD}$$

1. \triangle ABC is a right angled triangle in which $\angle C = 90^{\circ}$ and CD \perp AB. If BC = *a*, CA = *b*, AB = *c* and CD = *p* then prove that:

(i)
$$cp = ab$$

(ii) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$

2. O is any point inside a rectangle ABCD. Probe that: $OB^2 + OD^2 = OA^2 + OC^2$.

