OUR OWN HIGH SCHOOL, AL WARQA'A, DUBAI

GRADE: X - TRIANGLES

ASSIGNMENT 1

1. In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}$ so that $\mathrm{AD}=24 \mathrm{~cm}, \mathrm{AE}=32 \mathrm{~cm}$ and $E C=48 \mathrm{~cm}$. Find $A B$.

2. In a $\Delta \mathrm{ABC}, \mathrm{D}$ and E are points on the sides AB and AC respectively such that $\mathrm{DE} / / \mathrm{BC}$. If $\mathrm{AD}=x, \mathrm{DB}=x-2, \mathrm{AE}=x+2$ and $\mathrm{EC}=x-1$, then find the value of x.
3. Prove that a line parallel to the parallel sides of a trapezium, divides the non parallel sides in the same ratio.
4. The areas of two similar triangles ABC and LMN are $64 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$ respectively. If $\mathrm{MN}=6.3 \mathrm{~cm}$, find BC .
5. Prove that in a $\triangle \mathrm{ABC}$ with $\mathrm{AD} \perp \mathrm{BC}, \mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$.

ASSIGNMENT 2

1. In the figure, find $C A$ if $C D \perp D B$, and $\mathrm{AD} \perp \mathrm{DB}$

D $12 m$
B
2. In the figure, $\triangle \mathrm{PQR}$ is right angled at Q , and the points S and T trisect the side QR .

Prove that: $8 \mathrm{PT}^{2}=3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}$

3. In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{B}=90^{\circ}$, if $\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$ prove that $\angle \mathrm{ACD}=90^{\circ}$.
4. In the figure, PA, QB and RC each is perpendicular to AC such that $\mathrm{PA}=x, \mathrm{RC}=y, \mathrm{QB}=z$.

5. ABCD is a trapezium in which $\mathrm{AB} / / \mathrm{DC}$ and its diagonals intersect each other at the point O .

Prove that: $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$

A

ASSIGNMENT 3

1. $\triangle \mathrm{ABC}$ is a right angled triangle in which $\angle \mathrm{C}=90^{\circ}$ and $\mathrm{CD} \perp \mathrm{AB}$. If $\mathrm{BC}=a, \mathrm{CA}=b, \mathrm{AB}=c$ and $\mathrm{CD}=p$ then prove that:
(i) $c p=a b$
(ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

2. O is any point inside a rectangle $A B C D$. Probe that: $\mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{OA}^{2}+\mathrm{OC}^{2}$.
3. In a $\triangle \mathrm{ABC}, \angle \mathrm{ABC}<90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. prove that: $A C^{2}=A B^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} . \mathrm{BD}$

4. In a $\triangle \mathrm{ABC}, \angle \mathrm{ABC}>90^{\circ}$ and $\mathrm{AD} \perp$ (CB produced) Prove that: $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} . \mathrm{BD}$

