OUR OWN HIGH SCHOOL, AL WARQA'A, DUBAI GRADE : X PHYSICS – LIGHT REFLECTION AND REFRACTION MULTIPLE CHOICE QUESTIONS

23/11/2011

	The phenomenon by which the incident light falling on a surface is sent back into ledium is known as
 polarizatio reflection refraction absorption 	
Question:	When light is incident on a polished surface reflection takes place.
1. regular 2. irregular 3. diffused 4. normal	
Question:	The image formed by a plane mirror is always
1. real and er 2. virtual and 3. real and in 4. virtual and	l erect verted
Question:	The centre of the sphere of which the spherical mirror forms a part is called
1. centre of c 2. focus 3. pole 4. vertex	urvature
Question:	The focus of a concave mirror is
1. real2. virtual3. undefined4. at the pole	
Question:	A converging mirror is known as
1 convex mi	rror

2. plane mirror

- 3. concave mirror
- 4. cylindrical mirror

Question: The relation between the focal length and radius of curvature of a mirror is

1. $\frac{f}{2} + 1 = f$

- 2.R + 2 = f
- 3. f = R/2
- 4. f = 2 R

Question: An image formed by a convex mirror is always _____.

- 1. virtual, erect and diminished
- 2. virtual, real and magnified
- 3. real, inverted and diminished
- 4. real, erect and magnified

Question: If the image formed by a concave mirror is virtual, erect and magnified, then the object is placed ______.

- 1. between the pole of the mirror and the focus
- 2. beyond the centre of curvature
- 3. at the centre of curvature
- 4. at the focus

Question: Dentists use a ______ to focus light on the tooth of a patient.

- 1. concave mirror
- 2. convex mirror
- 3. plane mirror
- 4. cylindrical mirror

Question: An object is placed 1.5 m from a plane mirror. How far is the image from the person?

- 1.3 m
- 2.1.5 m
- 3.2 m
- 4.1 m

Question: An object placed 2m from a plane mirror is shifted by 0.5 m away from the mirror. What is the distance between the object and its image?

- 1.2 m
- 2.1.5 m
- 3.5 m
- 4.3 m

Question: What is the value of q in the following diagram?

- 1.30°
- 2.45°
- 3.90°
- 4.60°

Question: What is the angle between the incident and reflected rays when a ray of light is incident normally on a plane mirror?

- 1.90°
- 2.45°
- 3.180°
- 4.0

Question: Name the type of image that can be obtained on a screen.

- 1. Virtual
- 2. Real
- 3. Diverging
- 4. Converging

Question: A ray of light is incident on a plane mirror and the angle of reflection is 50°. Calculate the angle between the incident ray and the reflected ray.

- 1.50°
- $2.25^{\rm o}$
- 3.90°

 4.100°

- 1. Concave mirror
- 2. Convex mirror
- 3. Plane mirror
- 4. Lens

Question: Which mirror has a wider field of view?

- 1. Convex mirror
- 2. Concave mirror
- 3. Plane mirror
- 4. Cylindrical mirror

Question: The focal length of a concave mirror is 15 cm. What is its radius of curvature?

- 1.15 cm
- 2.30 cm
- 3.7.5 cm
- 4.45 cm

Question: The focal length of a mirror is 15 cm. Identify the type of mirror.

- 1. Concave mirror
- 2. Plane mirror
- 3. Convex mirror
- 4. Cylindrical mirror

Question: A ray of light passing through the _____ retraces its path.

- 1. focus
- 2. centre of curvature
- 3. pole
- 4. vertex

Question:	When an object is placed at the focus of a concave mirror, the image will be formed
1. infinity 2. focus 3. centre of c 4. pole	urvature
mirror. The	An object of size 2.0 cm is placed perpendicular to the principal axis of a concave distance of the object from the mirror equals to the radius of curvature. The size of vill be
1.0.5 cm 2.1.5 cm 3.1.0 cm 4.2.0 cm	
	If an incident ray passes through the centre of curvature of a spherical mirror, the y will
1. pass throug 2. pass throug 3. pass throug 4. retrace its	gh the centre of curvature gh the pole