OUR OWN HIGH SCHOOL, AL WARQA'A, DUBAI

GRADE: X POLYNOMIALS ASSIGNMENT - 1

1. Find the zero of the polynomials and verify the relation between zeros of a polynomial and its coefficients:

(a) $4x^2 + 11x - 20$ (b) $5x^2 - 32x + 12$ (c) $4\sqrt{3}x^2 + 5x - 2\sqrt{3}$ (d) $6x^2 - 3 - 7x$

- 2. Find the polynomial whose zeros are given as: (a) $\frac{2}{3}$, $-\frac{3}{4}$ (b) $4\sqrt{3}$, $-3\sqrt{3}$
- 3. Find the quadratic polynomial with the given numbers as sum and product of its zeros respectively: (a) 3, -5 (b) $\sqrt{2}$, $3\sqrt{2}$ (c) 2, -15
- 4. For what value of *k* is the polynomial $2x^3 kx^2 + 5x + 9$ exactly divisible by (x + 2).
- 5. If 2 is one zero of the polynomial $a^3 3a^2 10a + 24$, find the other zeros.
- 6. If 1 and 2 are two zeros of the polynomial $a^4 + 2a^3 13a^2 14a + 24$, find the other zeros of the polynomial.

ASSIGNMENT - 2

- 1. One zero of the polynomial $2x^2 8x m$ is 5/2. Find the other zero and the value of *m*.
- 2. If the zeros of the polynomial $f(x) = 2x^3 15x^2 + 37x 30$ are in AP, find them.
- 3. Divide $6x^2 31x + 47$ by 2x 5 and verify the division algorithm.
- 4. Find all zeros of the polynomial $f(x) = 6x^4 10x^3 13x^2 + 15x + 6$, if its two zeros are $\sqrt{3}$ and $\sqrt{3}$

$$-\sqrt{\frac{3}{2}}$$
 and $\sqrt{\frac{3}{2}}$

5. When the polynomial $f(x) = x^3 + x^2 + x - 2$ is divided by a polynomial g(x), the quotient is $x^2 + 2x + 1$ and the remainder is 2x - 1, find g(x).

ASSIGNMENT - 3

- 1. Form a quadratic polynomial, one of whose zero is $2 + \sqrt{5}$ and sum of the zeros is 4.
- 2. α and β are zeros of the quadratic polynomial $x^2 (k + 6)x + 2(2k 1)$. Find the value of k, if $2(\alpha + \beta) = \alpha \beta$.
- 3. If α and $\frac{1}{\alpha}$ are zeros of the polynomial $4x^2 2x + (k 4)$, find k.
- 4. α and β are zeros of the quadratic polynomial $3x^2 4x 5$, find the values of : (i) $\alpha^{-1} + \beta^{-1}$ (ii) $\alpha^2 + \beta^2$
- 5. α and β are zeros of the quadratic polynomial $kx^2 + 4x + 4$, find the value of k, if $\alpha^2 + \beta^2 = 24$.
- 6. If the polynomial $6x^4 9x^3 2x^2 + ax b$ is exactly divisible by the polynomial $3x^2 4$, then find the values of *a* and *b*.
