## OUR OWN HIGH SCHOOL, AL WARQA'A, DUBAI

## GRADE: X - CIRCLES

## ASSIGNMENT: 1

1. A circle touching the side BC
of $\triangle A B C$ at $P$ and touching $A B$ and $A C$ produced at $Q$ and $R$ respectively.
Prove that:
$A Q=1 / 2($ Perimeter of $\Delta A B C)$

2. A circle is inscribed in a $\triangle \mathrm{ABC}$ touches the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ at points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively. If $A B=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $C A=10 \mathrm{~cm}$, find $A D, B E$ and $C F$.


A
A
3. In the given figure, quadrilateral $A B C D$ is circumscribed, touching the circle at $P, Q, R$ and $S$. If $A P=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CS}=3 \mathrm{~cm}$, then find $A B$.


Page 1 of 3
4. If PT and PQ are two tangents to a circle with centre O so that $\angle \mathrm{TOQ}=110^{\circ}$. Find $\angle \mathrm{TPO}$.

5. In the figure, quad. ABCD is circumscribed, touching the circle at $\mathrm{P}, \mathrm{Q}$ and S such that $\angle \mathrm{DAB}=90^{\circ}$. If $\mathrm{CS}=27 \mathrm{~cm}$ and $\mathrm{CB}=38 \mathrm{~cm}$ and the radius of the circle is 10 cm , find $A B$.


## ASSIGNMENT: 2

1. ABC is a right triangle, right angled at B . A circle is inscribed in it. The lengths of the two sides containing the right angle are 6 cm and 8 cm . Find the radius of the incircle.


B E


B E C
Page 2 of 3
3. $O$ is the centre of a circle, PA and PB are tangent segments. Show that the points O, A, P and B are concyclic.

4. From an external point P , tangents PA and PB are drawn to a circle with centre O . If $C D$ is a tangent to the circle at E as shown in the figure and $\mathrm{AP}=14 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{PCD}$.

5. Two tangents PA and PB are drawn to a circle with centre $O$ from an external point $P$. Prove that: $\angle \mathrm{APB}=2 \angle \mathrm{OAB}$.

6. A chord AB of a circle $(\mathrm{O}, r)$ is produced to P so that $\mathrm{BP}=2 \mathrm{AB}$. Prove that: $\mathrm{OP}^{2}=\mathrm{OA}^{2}+6 \mathrm{AB}^{2}$.

